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Haemophilus parainfluenzae is part of the HACEK group of fastidious bacteria commonly implicated in endocarditis and 
bacteremia. Previously considered as a normal respiratory, oral and sometimes genitourinary commensal, it has been recognised 
as a pathogen that can cause life-threatening infections in both immunocompromised and healthy individuals. It has also been 
reported as a bacterium that can harbor transferable antibiotic resistance genes. This paper presents a literature review on the 
molecular mechanisms of resistance of H. parainfluenzae to commonly prescribed antibiotics and discusses areas for further 
research.
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Introduction
Haemophilus parainfluenzae, a Gram-negative cocco-bacillus, is a 
pleomorphic, non-motile bacterium. It belongs to the family 
Pasteurellaceae and is most closely related to Actinobacillus spp. 
and Aggregatibacter segnis.1 Although considered a normal part 
of the respiratory, oral and genitourinary flora, it has pathogenic 
potential. H. parainfluenzae forms part of the HACEK (Haemophilus 
parainfluenzae, Aggregatibacter actinomycetemcomitans, 
Aggregatibacter aphrophilus, Aggregatibacter paraphrophilus, 
Cardiobacterium spp., Eikenella corrodens and Kingella spp.) group 
of bacteria, which are implicated in bacteremia and infective 
endocarditis.2

A literature search revealed a paucity of research and information 
on antibiotic resistance mechanisms in this pathogen. The aim of 
this paper is, therefore, to provide a comprehensive review on 
molecular resistance mechanisms of H. parainfluenzae to 
commonly prescribed antibiotics.

Infections caused by H. parainfluenzae
H. parainfluenzae has been implicated in a number of infections. 
In addition to endocarditis and bacteremia,3 other pathologies 
associated with H. parainfluenzae include cellulitis, myositis,4 
biliary tract infections,5 meningitis,6 septic arthritis,7,8 neonatal 
sepsis,9 peritonitis,10 acute exacerbation of chronic obstructive 
pulmonary disease (AECOPD),11 bronchitis, sinusitis, otitis media, 
prosthetic/native joint infections, brain abscess, soft tissue 
infection, chorioamnionitis in women, hepatic infections,2 
ophthalmic infections,12 and urinary tract infections.13

Molecular mechanisms of resistance of  
H. parainfluenzae to antibiotics
The molecular mechanisms of resistance employed by  
H. parainfluenzae against antibiotics are diverse but similar to 
mechanisms employed by other Gram-negative bacteria. 
Investigation of these mechanisms involved polymerase chain 
reaction (PCR) amplification, sequence and alignment of genes 
to detect amino acid substitutions and expression of certain 
target proteins. The molecular mechanisms of antibiotic 

resistance reported in H. parainfluenzae are summarised in  
Table 1. The resistance mechanisms against each group of 
antibiotic are discussed below.

β-lactam antibiotics
Generally, resistance to β-lactam antibiotics is mediated through 
the production of β-lactam hydrolyzing enzymes (β-lactamases), 
changes in outer membrane permeability (modifications in 
porins), penicillin binding proteins (PBPs) with poor affinity for 
the antibiotic and the expression of efflux pumps that actively 
eject the antibiotics from the cell.22 The first report of β-lactam 
resistance in H. parainfluenzae was in 1976 by Groves et al.23 Since 
then, resistance has been observed globally at varying rates. The 
bacterium is notorious for β-lactamase production, and its  
β-lactamase producing ability is typically mediated by 
transferable plasmids.17,24–26

H. parainfluenzae is also considered as the origin and reservoir for 
the dissemination of β-lactamase-carrying plasmids to other 
bacterial species.27 The β-lactamases detected include the TEM-1 
and TEM-15 types, which are usually associated with 
plasmids.14,16,28,29 It was reported that the plasmid that carried the 
TEM-1 β-lactamase was identical to one isolated from ‘African-
type’ penicillinase-producing Neisseria gonorrhoeae strain.26,30 
Inhibitor resistant β-lactamases TEM-34 and TEM-182, which 
were both carried by TnA transposon of the Tn2 type, were also 
detected in H. parainfluenzae in 2011.16

β-lactam resistance in H. parainfluenzae not mediated by  
β-lactamases has also been reported.16,31 Some of these resistant 
bacteria utilise mutations in the PBPs to circumvent the lethal 
effects of the antibiotic. Molecular analysis revealed these 
mutations include amino acid substitutions in the PBP3; 
Lys276Asn, Ala307Asn, Val329Ile, Ser385Thr, Ile442F, Val511Ala, 
Asn526Lys, Asn526Ser, Ala343Val and Asn526His, Ala530Ser, 
Thr574Ala.14–17 Efflux-mediated mechanisms of resistance and 
under expression of porins in β-lactam resistant strains of  
H. parainfluenzae were not evident from the literature search.



The page number in the footer is not for bibliographic referencingwww.tandfonline.com/ojid 38

112 Southern African Journal of Infectious Diseases 2017; 32(3):111–114

Macrolides, azalides, ketolides, lincosamides 
and streptogramins
Resistance to the macrolides, azalides, ketolides, lincosamides 
and streptogramins is mediated by three main mechanisms: 
active efflux encoded by the msr (A), msr (B), msr (D), and mef (A)
genes; drug inactivation through esterases, phosphotransferases 
(encoded by mph genes); and, most importantly, target alteration 
by methylation (usually mediated by methylases encoded by 
erm genes) or the mutations in the domain V of rRNA and L4 and 
L22 that inhibit the antibiotic binding to its ribosomal target.32

Resistance of H. parainfluenzae to macrolides is attributed to the 
presence of the efflux mediated resistance mechanism mef (A) 
and msr (D), and to the Ala69Ser substitution in the L4 protein, a 
mutation formerly associated with H. influenzae. The ErmB gene 
which codes for methylases has also been implicated in 
macrolide, azalide and ketolide resistance by H. parainfluenzae.18 
Substitutions in the L22 ribosomal protein and in the 23S rRNA 
have not yet been reported in macrolide resistant H. 
parainfluenzae.15 However, the involvement of other resistance 
mechanisms of the bacteria to macrolides is still to be determined.

Tetracyclines
Resistance to tetracyclines is mediated through the following 
mechanisms: (1) enzymatic breakdown of tetracyclines; (2) 
mutations in rRNA; (3) efflux mediated mechanisms; (4) 
production of ribosomal protection proteins; and, (5) 
undetermined means that work by mechanisms completely 
different from well-documented determinants. The most 
important is the production of ribosomal protection proteins, 
which include Tet (T), Tet (S), Tet (Q), Tet (B), Tet (W), Tet (O), Tet (M) 

and OtrA. Tet (O) and Tet (M) are the most extensively studied and 
were originally described in Campylobacter jejuni and 
Streptococcus spp.33

In H. parainfluenzae, production of the ribosomal protective 
protein Tet (M), Tet (B), Tet (C), Tet (D) has been reported to cause 
resistance to tetracyclines,15,29 while enzymatic breakdown, 
mutations in rRNA and efflux pump mediated tetracycline 
resistance remain under-investigated.

Quinolones
Molecular detection of mechanisms carried out on 
fluoroquinolone resistant H. parainfluenzae over the past few 
years have revealed that mutations in genes that led to amino 
acid substitutions in Quinolone Resistance Determining Region 
(QRDR) of gyrA, gyrB, parC and parE are responsible for resistance 
to fluoroquinolones. Some of the substitutions detected included 
Ser84Phe and Asp88Tyr in gyrA, Ser84Phe, Ser84Leu, Ser84Tyr, 
Ser138Thr and Met198Leu in parC, and Asp420Asn and Ala451Ser 
in parE. Of the studies that investigated the involvement of 
plasmid mediated resistance genes (qnrA, qnrB, qnrS, qnrC, qnrD, 
qnrVC, qepA and aac(6′)-Ib-cr genes),15,17,19,20,34 only one detected 
aac(6′)-Ib-cr in four isolates of H. parainfluenzae.18

Chloramphenicol
Resistance of H. parainfluenzae to chloramphenicol was reported 
in 1976,35 with the molecular mechanism underlying this 
resistance being the production of CatS acetyltransferase 
enzyme.15 This enzyme is coded by the cat gene and is located on 
the chromosome of H. parainfluenzae as opposed to being 
plasmid-borne as observed in H. ducreyi and H. influenzae. The 
CatS of H. parainfluenzae share some similarity with type II CatS 
from Enterobacteriaceae.36

Aminoglycosides
Molecular mechanisms underlying resistance to this class of 
antibiotics include active efflux, reduced outer membrane 
permeability, mutations in the target molecule and inactivation 
by enzymes, the latter being the most common. This mechanism 
is mediated by three groups of enzymes: phosphotransferases, 
acetyltransferases and nucleotidyltransferases.37

Resistance of H. parainfluenzae to aminoglycosides has been 
reported,38 but to the best of our knowledge, the underlying 
molecular mechanisms remain unreported. There is, therefore, 
the need to study the molecular mechanisms of resistance.

Folic acid metabolism inhibitors
Resistance to these agents include: alternative metabolic 
pathways; impermeability of the cell wall; production of a 
resistant chromosomal enzyme; overproduction of a susceptible 
chromosomal enzyme; and, the production of a plasmid 
mediated inhibitor-resistant enzyme.

Plasmid and transposon-borne sulfonamide (sul) and trimethoprim 
(dfr) resistance genes have been reported, as have mutations in 
chromosomal gene folP for dihydropteroate synthase, leading to a 
reduced affinity for the inhibiting sulfonamide. These mutations 
include Leu186Phe; Asp238Asn; Asn245Lys and Phe246Tyr amino 
acid substitutions.39 Although high level resistance of  
H. parainfluenzae to anti-folate agents has been reported,34 the 
molecular mechanisms underlying the observed resistance (to the 
best of our knowledge) was not reported.

Table 1: Molecular resistance mechanisms of H. parainfluenzae

Antibacterial agent Molecular mechanisms 
of resistance

Reference

Beta lactams PBP3: Lys276Asn, 
Ala307Asn, Val329Ile, Ser-
385Thr, Ile442Phe, Val511A-
la, Asn526Lys, Asn526Ser, 
Ala343Val, Asn526His, 
Ala530Ser, Thr574Ala, Val-
562Ile, Val488Ile, Glu398Asp, 
Ile414Val,

(14–17)

TEM 15, TEM-182, TEM-34, 
TEM-1

(14, 16)

Macrolides Mef (A), Msr (D), Erm B; L4: 
Ala69Ser

(15, 18)

Quinolones GyrA: Ser84Phe, Asp88Tyr, 
Ser84Leu; 

(19, 20)

ParC (Ser84Phe, Ser84Leu, 
Ser84Tyr, Ser138Thr and 
Met198Leu)

(15, 17, 18, 21)

ParE (Asp420Asn and 
Ala451Ser)

Aac-(6’)-Ib-cr

Tetracycline Tet (M) (15)

Trimethoprim-Sulfameth-
oxazole

None reported

Rifampin None reported

Chloramphenicol CatS (15)

Aminoglycosides None reported



The page number in the footer is not for bibliographic referencingwww.tandfonline.com/ojid 39

112 Southern African Journal of Infectious Diseases 2017; 32(3):111–114

Macrolides, azalides, ketolides, lincosamides 
and streptogramins
Resistance to the macrolides, azalides, ketolides, lincosamides 
and streptogramins is mediated by three main mechanisms: 
active efflux encoded by the msr (A), msr (B), msr (D), and mef (A)
genes; drug inactivation through esterases, phosphotransferases 
(encoded by mph genes); and, most importantly, target alteration 
by methylation (usually mediated by methylases encoded by 
erm genes) or the mutations in the domain V of rRNA and L4 and 
L22 that inhibit the antibiotic binding to its ribosomal target.32

Resistance of H. parainfluenzae to macrolides is attributed to the 
presence of the efflux mediated resistance mechanism mef (A) 
and msr (D), and to the Ala69Ser substitution in the L4 protein, a 
mutation formerly associated with H. influenzae. The ErmB gene 
which codes for methylases has also been implicated in 
macrolide, azalide and ketolide resistance by H. parainfluenzae.18 
Substitutions in the L22 ribosomal protein and in the 23S rRNA 
have not yet been reported in macrolide resistant H. 
parainfluenzae.15 However, the involvement of other resistance 
mechanisms of the bacteria to macrolides is still to be determined.

Tetracyclines
Resistance to tetracyclines is mediated through the following 
mechanisms: (1) enzymatic breakdown of tetracyclines; (2) 
mutations in rRNA; (3) efflux mediated mechanisms; (4) 
production of ribosomal protection proteins; and, (5) 
undetermined means that work by mechanisms completely 
different from well-documented determinants. The most 
important is the production of ribosomal protection proteins, 
which include Tet (T), Tet (S), Tet (Q), Tet (B), Tet (W), Tet (O), Tet (M) 

and OtrA. Tet (O) and Tet (M) are the most extensively studied and 
were originally described in Campylobacter jejuni and 
Streptococcus spp.33

In H. parainfluenzae, production of the ribosomal protective 
protein Tet (M), Tet (B), Tet (C), Tet (D) has been reported to cause 
resistance to tetracyclines,15,29 while enzymatic breakdown, 
mutations in rRNA and efflux pump mediated tetracycline 
resistance remain under-investigated.

Quinolones
Molecular detection of mechanisms carried out on 
fluoroquinolone resistant H. parainfluenzae over the past few 
years have revealed that mutations in genes that led to amino 
acid substitutions in Quinolone Resistance Determining Region 
(QRDR) of gyrA, gyrB, parC and parE are responsible for resistance 
to fluoroquinolones. Some of the substitutions detected included 
Ser84Phe and Asp88Tyr in gyrA, Ser84Phe, Ser84Leu, Ser84Tyr, 
Ser138Thr and Met198Leu in parC, and Asp420Asn and Ala451Ser 
in parE. Of the studies that investigated the involvement of 
plasmid mediated resistance genes (qnrA, qnrB, qnrS, qnrC, qnrD, 
qnrVC, qepA and aac(6′)-Ib-cr genes),15,17,19,20,34 only one detected 
aac(6′)-Ib-cr in four isolates of H. parainfluenzae.18

Chloramphenicol
Resistance of H. parainfluenzae to chloramphenicol was reported 
in 1976,35 with the molecular mechanism underlying this 
resistance being the production of CatS acetyltransferase 
enzyme.15 This enzyme is coded by the cat gene and is located on 
the chromosome of H. parainfluenzae as opposed to being 
plasmid-borne as observed in H. ducreyi and H. influenzae. The 
CatS of H. parainfluenzae share some similarity with type II CatS 
from Enterobacteriaceae.36

Aminoglycosides
Molecular mechanisms underlying resistance to this class of 
antibiotics include active efflux, reduced outer membrane 
permeability, mutations in the target molecule and inactivation 
by enzymes, the latter being the most common. This mechanism 
is mediated by three groups of enzymes: phosphotransferases, 
acetyltransferases and nucleotidyltransferases.37

Resistance of H. parainfluenzae to aminoglycosides has been 
reported,38 but to the best of our knowledge, the underlying 
molecular mechanisms remain unreported. There is, therefore, 
the need to study the molecular mechanisms of resistance.

Folic acid metabolism inhibitors
Resistance to these agents include: alternative metabolic 
pathways; impermeability of the cell wall; production of a 
resistant chromosomal enzyme; overproduction of a susceptible 
chromosomal enzyme; and, the production of a plasmid 
mediated inhibitor-resistant enzyme.

Plasmid and transposon-borne sulfonamide (sul) and trimethoprim 
(dfr) resistance genes have been reported, as have mutations in 
chromosomal gene folP for dihydropteroate synthase, leading to a 
reduced affinity for the inhibiting sulfonamide. These mutations 
include Leu186Phe; Asp238Asn; Asn245Lys and Phe246Tyr amino 
acid substitutions.39 Although high level resistance of  
H. parainfluenzae to anti-folate agents has been reported,34 the 
molecular mechanisms underlying the observed resistance (to the 
best of our knowledge) was not reported.

Table 1: Molecular resistance mechanisms of H. parainfluenzae

Antibacterial agent Molecular mechanisms 
of resistance

Reference

Beta lactams PBP3: Lys276Asn, 
Ala307Asn, Val329Ile, Ser-
385Thr, Ile442Phe, Val511A-
la, Asn526Lys, Asn526Ser, 
Ala343Val, Asn526His, 
Ala530Ser, Thr574Ala, Val-
562Ile, Val488Ile, Glu398Asp, 
Ile414Val,

(14–17)

TEM 15, TEM-182, TEM-34, 
TEM-1

(14, 16)

Macrolides Mef (A), Msr (D), Erm B; L4: 
Ala69Ser

(15, 18)

Quinolones GyrA: Ser84Phe, Asp88Tyr, 
Ser84Leu; 

(19, 20)

ParC (Ser84Phe, Ser84Leu, 
Ser84Tyr, Ser138Thr and 
Met198Leu)

(15, 17, 18, 21)

ParE (Asp420Asn and 
Ala451Ser)

Aac-(6’)-Ib-cr

Tetracycline Tet (M) (15)

Trimethoprim-Sulfameth-
oxazole

None reported

Rifampin None reported

Chloramphenicol CatS (15)

Aminoglycosides None reported

Resistance in Haemophilus parainfluenzae 113

Conclusion
This literature review revealed that the molecular mechanisms of 
resistance of H. parainfluenzae to a number of commonly 
prescribed antibiotics have not been fully investigated, although 
it has been shown to harbor transferable resistance determinants 
that can spread to more clinically significant bacteria. There is, 
therefore, an ongoing need for antimicrobial susceptibility 
surveillance and elucidation of genotypic mechanisms of 
resistance.
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