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Shiga toxin-producing Escherichia coli (STEC) O157:H7 is responsible for intestinal and extra-intestinal disease syndromes in 
human. Isolation of the pathogen from animals, food, clinical samples and environment has been reported from all continents. A 
review of STEC O157:H7 in Africa from a structured literature search of the PubMed electronic database is presented. It describes 
the epidemiological status of the pathogen on the aspects of source, transmission, pathogenesis, disease syndromes, diagnosis, 
disease burden and the challenges in treatment and control strategies. About a quarter of African countries have reported 
isolation of STEC O157:H7 either from humans, animals, food or the environment. Different methods have been used in detection 
of the pathogen. Most reported human infections do not show temporal relationships with reports of isolation of the pathogen 
from other sources such as animals, water or food. Lack of a direct link between isolates from humans and other sources makes it 
difficult to point out incident specific determinants and direction of transmission. The aim of this review is to give an insight into 
the features of STEC O157:H7 infection in Africa and draw the attention of various stakeholders to the public health threat of the 
pathogen for possible interdisciplinary and multi-sectoral joint efforts in the control strategies.
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Introduction
Escherichia coli strains that cause diarrhea in humans are either 
enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), 
enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), 
diffusely adherent E. coli (DAEC) or verocytotoxigenic E. coli 
(VTEC).1 One of the VTEC stains associated with diarrhea, bloody 
diarrhea, haemorrhagic colitis and haemolytic uremic syndrome 
(HUS) is the Shiga toxin-producing Escherichia coli (STEC) 
O157:H7.2 Once described as a rare serotype causing human 
infection,3 STEC O157:H7 is now widespread in food products4–6 
and the environment.7,8 This prevalent nature and other 
biological characteristics, such as low infective dose,7,9–11 ability 
to express different virulence factors,9 long survival time in the 
environment12 and the difficulty in treatment,13 make STEC 
O157:H7 an enteric pathogen of major concern worldwide. This 
report reviews the epidemiology of the pathogen with focus on 
(1) distribution, (2) disease manifestation, (3) pathogenicity, (4) 
isolation and characterization, (5) treatment, (6) disease burden 
and (7) prone groups. The aim is draw the attention of public 
health stakeholder to this health problem in Africa so that multi-
disciplinary joint efforts can be applied in the control strategies.

Methodology
A search algorithm with terms ‘shiga-toxigenic Escherichia coli’ 
OR ‘shiga-toxigenic’ AND ‘Escherichia’ AND ‘coli’ OR ‘shiga-
toxigenic Escherichia coli’ OR ‘STEC’ AND ‘O157’ AND ‘H7’ AND 
‘Africa’ was developed in a PubMed data base on 20 June 2015 to 
search for articles published in last 10 years. A total of 68 journal 
articles were initially obtained and 37 of them were selected for 
the report because they described subjects of interest. A search 
through the reference list of the selected articles provided 
additional references about the pathogen in relation to hosts, 
reservoirs, isolation techniques, virulence, pathogenicity, clinical 
signs, disease burden, treatment, control and threat to the 
immunocompromised population. Some references of non-

African context are included in this review to cover general issues 
for a broader view of the pathogen.

The burden of STEC O157:H7 infection
Globally STEC causes 2 801 000 acute illnesses annually, with an 
incidence rate of 43.1 cases per 100  000 person-years. This 
burden leads to 3  890 cases of HUS and 230 deaths. Among 
those, a total of 10 200 cases of STEC infections occur in Africa 
with an incidence rate of 1.4 cases per 100  000 person-years. 
STEC O157:H7 contributes 10% to this burden.14

Reports of STEC O157:H7 Occurrence in Africa
Shiga toxin-producing Escherichia coli O157:H7 isolation has 
been reported from all zones of Africa (East, Central, South, North 
and West Africa) from humans, animals, food products and the 
environment. The first case of human infection was reported 
back in 1990 in Johannesburg, South Africa.15

In central Africa, the pathogen has been isolated in humans with 
haemorrhagic colitis in Bangui, Central African Republic in 1996, 
which led to mortalities.13 In 1998, STEC O157:H7 isolation from 
humans was reported following an outbreak of bloody diarrhoea 
in Cameroun.16

In east Africa, isolation of the pathogen has been reported in 
Tanzania, Kenya and Ethiopia. A STEC O157:H7 prevalence of 
more than 7% was reported in patients with diarrhoea in 
Morogoro, Tanzania in 2006.17 In 2012, the pathogen was isolated 
from cattle in the same area with a prevalence of 0.9%.18 In Kenya, 
STEC O157:H7 was isolated from a two-year-old boy with 
haemorrhagic colitis.19 Milk and cattle faeces subsequently tested 
positive for the pathogen in the same country.6 STEC O157:H7 
has been isolated from beef, mutton and chevon in Ethiopia at a 
prevalence of 8, 2.5 and 2%, respectively,20 as well as goat and 
sheep faeces (4.7%), skin swabs (8.7%), carcass before washing 
(8.1%), carcass after washing (8.7%) and water samples (4.2%).21
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Reports on STEC O157:H7 occurrence are available from Algeria, 
Morocco, Tunisia and Egypt (north Africa). A study in Algeria 
reported a prevalence of 7% from bovine carcasses.5 In Morocco, a 
prevalence of 9.1% from dairy products and 11.1% in meat 
marketed in Rabat have been reported.22 STEC O157:H7 was again 
isolated in Morocco from raw meat products at a proportion of 9%.4 
In 2011, a 1.9% prevalence from shellfish in Mediterranean coastline 
of Morocco was reported.23 In Tunisia, 3.4% of isolates from human 
stool samples were shiga toxin-producing E. coli O157:H7.24 
Isolation of the pathogen from different sources has also been 
documented from Egypt. For instance, a survey in Egypt revealed 
that a prevalence of 6% from beef samples, 4% from chicken 
samples, 4% from lamb samples and 6% from milk samples was 
obtained in slaughterhouses, supermarkets and farmers’ homes.25

In west Africa, much of the work reported on STEC O157:H7 has 
been from Nigeria. In Lagos, a prevalence of 6% from patients 
with diarrhoea has been documented.26 In the city of Ibadan, 
STEC O157:H7 has been isolated from the faeces of cattle, sheep, 
goat and pig, and also from beef, chevon (goat) and pork with a 
prevalence of 5%.27 In Zaria, the strain has been isolated from the 
diarrheal stool of children under the age of 5  years with a 
prevalence of 5.4% and from surface water at a proportion of 
2.2%.28 The STEC O157:H7 isolation in Nigeria provides evidence 
of occurrence of the pathogen in human, animals, meat and 
environment (water). A study in the coastal savannah zone of 
Ghana did not report on the isolation of E. coli O157:H7 in raw 
milk and milk products,29 but this does not guarantee absence of 
the pathogen. Information on recovery of E. coli O157:H7 from 
other western African countries, including Mali, Niger, Guinea, 
Ivory Coast, Togo, Benin, Guinea Bissau, Sierra Leone, Liberia, 
Mauritania, Cape Verde and Burkina Faso, were not accessed. But 
given the similarity between environments, there is high chance 
that this pathogenic E. coli strain exists in these countries. The 
lack of reports on E. coli O157:H7 isolation in some African 
countries may be due to poor diagnostic facilities, especially in 
rural settings where infections may pass undiagnosed.

The southern African region is comprised of Zambia, Malawi, 
Mozambique, Zimbabwe, Botswana, Namibia, Swaziland, 
Lesotho and South Africa. In South Africa, a 10.3% prevalence of 
STEC O157:H7 from vegetable samples in Eastern Cape province 
was documented.30 Meat and meat products from the same 
location carried the pathogen at a proportion of 2.8%.31 Further 
studies reported a prevalence of 56.5% and 43.5% from stool of 
confirmed and non-confirmed HIV/AIDS patients, respectively, in 
the Eastern Cape province.32 The STEC O157:H7 isolates from 
meat products (7.8%), water (8.6%), vegetables (10.3%), 
confirmed HIV/AIDS patients (56.5%) and non-confirmed HIV/
AIDS patients (43.5%) were genetically related;30 and, hence, 
provided evidence on the possible transfer of the pathogens 
between different study components. In the neighbouring 
country of Botswana, the prevalence of STEC O157:H7 in meat 
cubes, minced meat and fresh sausages in Gaborone were 
reported to be 5.22, 3.76 and 2.26%, respectively.33 These findings 
from beef-product outlets put consumers at risk of infection. 
Home cooked food samples (maize flour porridge, fish, vegetables 
and beans) investigated for pathogenic bacteria, were found to 
be contaminated with STEC O157:H7 at a proportion of 8% in 
Lungwena, Malawi.34 In Mozambique, the pathogen was reported 
to be one of the causes of diarrhoea in children at a proportion of 
1.9%.35 STEC O157:H7 was reported to also cause dysentery in 
HIV patients in Zimbabwe at a prevalence of 8%.36

Therefore, reports on isolation of pathogenic E. coli O157:H7 
from all regions of the African continent (east, west, south, north 
and central) show that the pathogen is found throughout Africa. 
A total of 15 countries have reported recovery of pathogenic E. 
coli O157:H7 either from humans, animals, food products or the 
environment. Out of 30 reviewed cases, 10 (33.3%) come from 
human patients and the remaining 20 isolations (66.7%) belong 
to food stuffs,8 cattle,5 water3 and others (2 sheep and goats, 1 
vegetable and 1 shell fish) (Table 1).

Transmission of STEC O157:H7
STEC O157:H7 is an enteric pathogen that is transmitted to 
humans through ingestion of contaminated food, or hands to 
mouth.7,37 Person-to-person contact can lead to transmission of 
the pathogen through the oral-faecal route.9 The infectious dose 
that has caused disease symptoms in humans has been reported 
to be as low as 4 to 24 organisms.7,11 Ruminants are said to be 
reservoirs, whereby cattle are regarded as principal sources of 
infections.6,38–42 However other ruminant species, such as goats, 
sheep,21,27 and buffaloes,43 serve as a source of the pathogen, 
with the exception for camels.44 Non-ruminant animals such as 
pigs27,38,39 and pigeons45 are also reported to carry this strain of 
pathogenic E. coli. Fish in contaminated water have been 
reported to harbour STEC O157:H7.46 A single dose of 100 CFU is 
sufficient to infect cattle,47 while sheep have been been infected 
by a single oral dose of 105 CFU.48 These doses can be acquired by 
ingestion of as little as 0.1 g of manure containing 106 CFU/g.48 
Shedding of the pathogen in cattle is intermittent,45,49 the 
duration of shedding by cattle is less than a month and shedding 
peaks occur during the months of summer.49,50 Weaning calves 
are reported to shed more bacteria than other age groups.50,51 
These findings suggest that having negative results at a particular 
point in time does not indicate absence of STEC O157:H7. 
Moreover, the reported prevalence of STEC O157:H7 may be 
lower or higher than the real situation depending on the 
composition of cattle, by age, in the study.

Accidental ingestion of STEC O157:H7 following contact with 
infected animals or the contaminated environment has led to 
human infection.7,52,53 Contaminated food products such as 
beef,4,5,20,22,25,33 chevon, mutton,20,21,25 milk and chicken may lead 
to human infection.22,25 Marine environmental contamination 
has also posed a risk because of isolation of the pathogen from 
shellfish.23 Convenient foods under poor preparation or handling 
have also been reported to play a role in propagation of this 
pathogen.37 Moreover, inanimate objects such as soil,7 water,28,46 
marine sediments23 and manure50 are a source of the pathogen. 
The risk is potentiated by the ability of the pathogen to survive 
harsh conditions, such as the low pH of dairy products,54,55 or in 
manure for more than four months.48 Generally, the risk factors 
for STEC O157:H7 infections include contact with animals and 
their environment and poor personal hygiene, such as not 
washing hands after handling animals or prior to eating.7,52,53 
These findings and reports call for hygiene observance after 
contact with animals, the suspected environment or during 
preparation of foods.

In Africa, evidence of STEC O157:H7 transmission between 
humans, animals and environment is not clear. From the reports 
in this review, isolation of STEC O157:H7 from humans was driven 
by the occurrence of disease syndromes, such as diarrhoea, while 
detection of the pathogen from animals, animal product and the 
environment was part of routine research work. There is no 
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temporal relationship in isolation from these two ends. Under 
such a scenario, it is difficult to establish events and direction of 
transmission, as well as to quantify the risk of pathogen transfer 
between humans, livestock and the environment. There is a need 
to investigate the possible sources and to quantify risk factors 
every time STEC O157:H7 is isolated from humans to ensure that 
prevention and control strategies are appropriate.

Isolation and characterisation of STEC O157:H7
Like any other member of the family Enterobacteriaceae, Shiga 
toxin-producing Escherichia coli O157:7 can be isolated on 
MacConkey agar, followed by conventional biochemical or 
serological tests to confirm that the isolates are E. coli. Isolation 
can also be done by use of sorbitol MacConkey agar whereby 
most STEC O157:H7 are distinguished from other strains by their 
inability to ferment sorbitol. Direct inoculation of a sample on 
sorbitol MacConkey agar has been employed, but has been 
proven to be less sensitive compared to immunomagnetic 
separation.56,57 Some studies have employed both sorbitol 
MacConkey agar and immunomagnetic separation to maximise 
the chances of isolating the pathogen.32 STEC O157:H7 strains 
should be distinguished from Non-O157:H7 strains, which also 
do not ferment sorbitol.18 Either of these E. coli isolation options 
can be accomplished by performing an agglutination test using 
antibodies against a somatic antigen for O157:H7 and a flagella 
antigen for H7. Polymerase chain reaction (PCR) for the detection 
of shiga toxin-producing genes in E. coli O157:H7 remains a gold 
standard detection method.57 Detection of the bacteria or toxins 
may take more than 24 h.58 In some instances, DNA hybridisation 

has been performed to affirm additional virulence genes and 
phenotypic activities of shiga toxin-producing genes proven by 
Vero-cell cytotoxicity assay.

In the present review, sorbitol MacConkey agar was used in 
isolation of STEC O157:H7 in 21 out of 24 reports from Africa. An 
immunomagnetic separation technique was employed in seven 
reports, in which it was used together with sorbitol MacConkey 
agar. After isolation, the characterisation of E. coli O157:H7 was 
done by polymerase chain reaction (PCR) to detect the shiga 
toxin-producing genes (14 reports), O157 antisera for detection of 
somatic antigen O157 (18 reports) and dot plot DNA hybridisation 
was used to confirm PCR results (2 reports). Serotyping of O157:H7 
antigens was performed in four studies, while Vero-cell 
cytotoxicity assays were performed to test for cytopathic effects 
on Vero-cell monolayers in six studies that are included in this 
review (Table 1). The use of molecular methods (PCR) to detect 
shiga toxin-producing genes in only 14 out of 24 (58%) studies in 
this review could have resulted in missed detection and under-
reporting of STEC in Africa. All these STEC O157:H7 detection 
methods required more than 24  h to complete. Moreover, not 
many laboratories in Africa can afford these diagnostic procedures. 
There is a need to improve diagnostic facilities in Africa – even by 
starting with a few reference laboratories in each African country 
– which will enable quick and accurate detection of STEC O157:H7 
infection. This will help to avoid inappropriate management of 
cases, such as use of antimicrobials which are easily accessed in 
Africa and often without prescription, for any enteric illness 
including STEC O157:H7 infection.

Table 1: Sources and methods of STEC O157 isolation and characterisation in African continent

*SMAC = sorbitol MacConkey agar, IMS = immunomagnetic separation, VCA = Vero-cell assay.

Country Source Isolation and characterisation method* Author

Central African Republic Human PCR Germani et al. 1997

Cattle, fish, water, environment SMAC, anti O157 antisera and VCA Tuyet et al. 2006

Cameroon Human SMAC, anti O157 antisera, O:H serotyping and VCA Cunin et al. 1999

Tanzania Human SMAC, IMS, anti O157 antisera and PCR Raji et al. 2008

Cattle SMAC, anti O157 antisera, PCR, DNA hybridization, O:H serotyping 
and VCA

Lupindu et al. 2014

Kenya Human PCR, DNA hybridization, VCA Sang et al. 1996

Cattle, food (milk) SMAC, anti O157 antisera and PCR Kang’ethe et al. 2007

Ethiopia Beef, mutton and chevon SMAC, O:H serotyping Hiko et al. 2008

Water, sheep, goats IMS, SMAC, anti O157 antisera and PCR Mersha et al. 2010

Algeria Cattle (carcass) SMAC, anti O157:H7 antisera, PCR, DNA hybridization Chahel et al. 2006

Morocco Food (Dairy and meat products) IMS, SMAC, anti O157 antisera and PCR Benkerroum et al. 2004

Raw meat products IMS, SMAC, anti O157 antisera and PCR Beneduce et al. 2008

Shellfish SMAC, anti O157 antisera and PCR Bennani et al. 2011

Tunisia Human SMAC, anti O157 antisera, PCR and VCA Al-Gallas et al. 2006

Egypt Beef, chicken, lamb and milk SMAC and O:H serotyping Abdul-Raouf et al. 1995

Nigeria Human SMAC, anti O157 antisera. VCA Olorunshola et al. 2000

Cattle, food, sheep, goat, pig SMAC and anti O157 antisera Ojo et al. 2010

Human, water SMAC, anti O157 antisera Chigor et al. 2010

South Africa Human, vegetable IMS, SMAC and PCR Abong’o et al. 2008

Food IMS, SMAC and PCR Abong’o and Momba 2009

Botswana Food (meat) IMS, SMAC and anti O157 antisera Magwira et al. 2004

Malawi Maize porridge, vegetable, beans SMAC, anti O157 antisera Taulo et al. 2008

Mozambique Human PCR Mandomando et al. 2007

Zimbabwe Human SMAC Gwavava et al. 2001
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haemolytic anaemia and nephropathy, may come as a 
complication of STEC O157H7 infection following prolonged 
illness or sometimes disease management such as the use of 
antibiotics.73 However, some humans do not show signs of 
disease despite infection and these are known as asymptomatic 
carriers.24,74 Disease syndromes by STEC O157:H7 in Africa have 
been reported to take the form of an epidemic13,16 whereby the 
1992 outbreak in Swaziland and South Africa are reported to be 
the largest in Africa.75 However, sporadic forms of the disease 
have posed a threat to public health as well.19

Treatment of STEC O157:H7 infection
Infections with shiga toxins-producing bacteria such as Shigella 
dysenteriae type I and STEC are controlled by the use of antibiotics 
and supportive therapies.13,76 However, in complicated forms of 
infection, like with HUS, antibiotics are not effective.13,76 
Administration of antibiotics to patients infected with STEC 
O157:H7 is reported to increase the release of shiga toxins and 
thus increasing the risk of developing HUS.13,73 This is thought to 
be due to the increased release of toxins following death of 
STEC.73 The case is different, however, in S. dysenteriae type I 
infection where early antimicrobial therapy lowers the risk of 
developing HUS.76 Therefore, it is important to establish the 
etiology of an enteric disease before administration of antibiotics 
because it may worsen the prognosis in case of a STEC infection. 
This demand presents a challenge in developing countries where 
diagnostics do not match the requirements and antibiotics are 
haphazardly used.77,78

Antimicrobial resistance in STEC O157:H7
Different studies in Africa have reported resistance of STEC 
O157:H7 to different antimicrobials. For instance, occurrence of 
multi-drug resistant STEC O157:H7 isolated from humans, 
animals and the environment has been reported in Egypt,79 
while isolation of multi-drug resistant STEC O157:H7 from cattle 
in South Africa have also been reported.80 Similar results have 
been reported by Chigor et al. in Nigeria. Multi-drug resistance 
may seem of less importance since antimicrobials are not used to 
treat STEC O157:H7 infection, but there may be a contribution 
towards selection for resistance genes.

Control of STEC O157:H7 infection
Research on vaccination of reservoirs in an effort to reduce 
bacteria shedding has shown signs of success,81 but the 
practicality of this approach is questionable due to the use of 
transgenic tobacco plant cells.9 Some substances such as 
essential oils from Cinnamomum zeylanicum have shown 
bactericidal activities.82 But, the above efforts plus dietary 
manipulations are not promising strategies. Thus, hygienic 
management of animal and food products remain better options 
in control of STEC transmission. Moreover, we suggest structuring 
of an inter-sectoral cooperation between the veterinary (where 
the main reservoir, cattle, belong) and medical profession (where 
patients are cared for). A platform for exchange of information 
and strategies can help in controlling the emergence and spread 
of the pathogen.

STEC O157:H7 special prone group
Shiga toxin-producing E. coli infect all sexes and ages, but many 
reported cases involve young and elderly people.19,35 However, 
the susceptibility spectrum is broadening such that, apart from 
the usual prone groups of the young and elderly, 
immunocompromised people form part of a group at risk. Cases 
of STEC O157:H7 infections in people living with HIV/AIDS have 
been reported in Africa.32,36 This poses a big challenge because 

Pathogenicity of STEC O157:H7 infection
STEC O157:H7 possesses different virulence factors that are 
important in pathogenicity. The major virulence factor is the 
shiga toxin. Two forms of the toxin, stx1 and stx2 encoded by stx1 
and stx2 genes are known59 and reported to be responsible for 
haemorrhagic uremic syndrome (HUS).60 The stx1 is divided into 
three subtypes (stx1a, stx1c and stx1d) while seven subtypes 
form the stx2 group (stx2a, stx2b, stx2c, stx2d, stx2e, stx2f and 
stx2g).61 Of the two groups, subtypes of stx2 are associated with 
more severe HUS syndrome.62 Shiga toxins, which are protein 
molecules, bind to eukaryotic surface cells and inhibit protein 
synthesis with the death of host cells as a consequence.63 Intimin 
is another virulence factor which is coded by attaching and 
effacing the eae gene.64 Intimin is reported to facilitate 
attachment of bacteria to intestinal epithelia during colonisation 
resulting into production of lesions and diarrhoea.59,65,66 This 
virulence factor is also possessed by enteropathogenic E. coli 
(EPEC).67 Enterohaemolysin is another virulence factor for STEC 
O157:H7. This protein toxin damages cell membranes of 
erythrocytes and is used as a surrogate tool in detection of shiga 
toxin-producing E. coli.68–70 Although enterohaemolysin activity 
can easily be visualised on blood agar cultures, confirmation is 
usually achieved by PCR amplification of the ehxA gene.59,68 Some 
other E. coli strains such as O26, O103, O111, O118, O128, O121, 
O45 and O145 can produce disease syndromes and have been 
reported to be enterohaemolysin-positive and produce shiga 
toxins.68,70–72 The synergic effects of these virulence factors make 
STEC O157:H7 a potential pathogen to humans. All virulence 
genes, namely stx1, stx2, eae and ehxA genes, have been detected 
in humans, livestock, food products and the environment in 
eight different combinations as reported in 22 studies from 
Africa.8 The most dominant combination was stx1+stx2. Cattle are 
the most common source of STEC O157:H7, as shown in Table 2. 
Therefore, it is important to consider the use of diagnostic 
approaches which target different genes so as to increase the 
sensitivity of STEC O157:H7-related studies.

Disease syndromes caused by STEC O157:H7
To date, STEC O157:H7 has been reported to cause intestinal and 
extra-intestinal disease symptoms in humans. Disease symptoms 
may take different forms such as diarrhoea,17 haemorrhagic 
colitis13,19 or haemolytic uremic syndrome.13 Haemolytic uremic 
syndrome, which is characterised by thrombocytopenia, 

Table 2: STEC O157:H7 virulence factor combinations from studies in 
Africa

*Central African Republic.

Gene 
combination

Source Reports Countries

stx1 Cattle feces, milk 2 Kenya 

stx2 Cattle feces, human 
stool

2 CAR* and Kenya

stx1 + eae Human stool 1 CAR*

stx1 + stx2 Cattle feces, water, 
fish, human stool, 
milk, beef, goat, 
sediment

6 CAR, Ethiopia, 
Egypt and Morocco

eae + ehxA Cattle feces, pig 1 South Africa

eae + stx2 + ehxA Cattle feces, cattle 
carcass

2 Tanzania and 
Algeria

stx1 + stx2 + eae Human stool, beef 2 Cameroon and 
Morocco 

stx1 + stx2 + eae 
+ ehxA

Cattle feces, goat, 
sheep, pig, human 
stool

2 Nigeria, South 
Africa and Tunisia
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Africa has a large share in the global HIV/AIDS burden. 
Furthermore, complications of STEC O157:H7 infections, e.g. 
HUS, are aggravated by the use of antibiotics in HIV/AIDS patients 
and are essential to combat other opportunistic microorganism 
infections. Subsequently, there becomes imbalance between the 
desire to alleviate the effects of opportunistic pathogens and 
shiga-toxins in HIV/AIDS patients due to contrasting outcomes of 
antimicrobial use. Reports of antibiotic use, such as ciprofloxacin, 
meropenem, fosfomycin, chloramphenicol, azithromycin and 
rifaximin, in treatment of STEC O104:H4 infections without 
induction of shiga toxin release83,84 are promising. More research 
on these antibiotics is required to ascertain the possibility of 
their use to treat STEC O157:H7 patients with HIV/AIDS.

STEC non-O157:H7
Although STEC O157:H7 is the most commonly reported cause 
of human gastroenteritis, STEC non-O157:H7 pose an increasing 
risk in public health. When isolation procedures do not specifically 
target O157:H7 strain, the proportion of STEC isolation skews 
towards non-O157:H7. In Africa most of the major worldwide-
recognised non-O157 serotypes (O103, O111, O145 and O26) 
have been isolated from different parts of the continent. For 
instance, in Egypt STEC O26, O114, O125 and O158 have been 
isolated from humans, cattle, sheep, chickens and water.85,86 In 
Tanzania, STEC O113 has been isolated from cattle faeces.18 In 
South Africa, screening of STEC isolates from diarrhoeic human 
patients revealed isolation of STEC O4, O5, O21, O26, O84 and 
O111, in addition to O157.72 In the same country, STEC O26 and 
O145 have been isolated from pig faeces.87 These reports suggest 
that whenever STEC-related gastroenteritis is suspected, we 
should also consider other strains of STEC, not only O157, 
because failure to isolate O157:H7 may mislead the cause of 
illness. On the other hand, diagnosis of STEC-related 
gastroenteritis based on detection of shiga toxins could help in 
avoiding this discrimination.

The most recent and striking non-STEC O157-related HUS 
outbreak in German in 2011 was caused by O104:H4 strain. This 
strain had previously been isolated from diarrhoeic patients in 
Central African Republic in the mid-nineties.88

Conclusion
Isolation of STEC O157:H7 from animals and food products 
reported from almost all over Africa suggests a high risk for 
human infection. Lack of proper laboratory facilities, especially in 
rural settings of Africa, interferes with definitive diagnoses and, 
hence, patients are treated tentatively. As such, antibiotic 
prescribed to patients with gastroenteritis can be fatal especially 
in case of STEC O157:H7 infection. Additionally, difficulty in 
managing infection cases and time consuming diagnostic 
procedures call for preventive approaches rather than curative 
measures. Proper cattle and manure handling practices as well as 
public awareness on the epidemiology of the pathogen should 
be instituted. Vehicles of transmission, such as food products 
and water, should be decontaminated so as to prevent health 
implications due to STEC O157:H7 infection.
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haemolytic anaemia and nephropathy, may come as a 
complication of STEC O157H7 infection following prolonged 
illness or sometimes disease management such as the use of 
antibiotics.73 However, some humans do not show signs of 
disease despite infection and these are known as asymptomatic 
carriers.24,74 Disease syndromes by STEC O157:H7 in Africa have 
been reported to take the form of an epidemic13,16 whereby the 
1992 outbreak in Swaziland and South Africa are reported to be 
the largest in Africa.75 However, sporadic forms of the disease 
have posed a threat to public health as well.19

Treatment of STEC O157:H7 infection
Infections with shiga toxins-producing bacteria such as Shigella 
dysenteriae type I and STEC are controlled by the use of antibiotics 
and supportive therapies.13,76 However, in complicated forms of 
infection, like with HUS, antibiotics are not effective.13,76 
Administration of antibiotics to patients infected with STEC 
O157:H7 is reported to increase the release of shiga toxins and 
thus increasing the risk of developing HUS.13,73 This is thought to 
be due to the increased release of toxins following death of 
STEC.73 The case is different, however, in S. dysenteriae type I 
infection where early antimicrobial therapy lowers the risk of 
developing HUS.76 Therefore, it is important to establish the 
etiology of an enteric disease before administration of antibiotics 
because it may worsen the prognosis in case of a STEC infection. 
This demand presents a challenge in developing countries where 
diagnostics do not match the requirements and antibiotics are 
haphazardly used.77,78

Antimicrobial resistance in STEC O157:H7
Different studies in Africa have reported resistance of STEC 
O157:H7 to different antimicrobials. For instance, occurrence of 
multi-drug resistant STEC O157:H7 isolated from humans, 
animals and the environment has been reported in Egypt,79 
while isolation of multi-drug resistant STEC O157:H7 from cattle 
in South Africa have also been reported.80 Similar results have 
been reported by Chigor et al. in Nigeria. Multi-drug resistance 
may seem of less importance since antimicrobials are not used to 
treat STEC O157:H7 infection, but there may be a contribution 
towards selection for resistance genes.

Control of STEC O157:H7 infection
Research on vaccination of reservoirs in an effort to reduce 
bacteria shedding has shown signs of success,81 but the 
practicality of this approach is questionable due to the use of 
transgenic tobacco plant cells.9 Some substances such as 
essential oils from Cinnamomum zeylanicum have shown 
bactericidal activities.82 But, the above efforts plus dietary 
manipulations are not promising strategies. Thus, hygienic 
management of animal and food products remain better options 
in control of STEC transmission. Moreover, we suggest structuring 
of an inter-sectoral cooperation between the veterinary (where 
the main reservoir, cattle, belong) and medical profession (where 
patients are cared for). A platform for exchange of information 
and strategies can help in controlling the emergence and spread 
of the pathogen.

STEC O157:H7 special prone group
Shiga toxin-producing E. coli infect all sexes and ages, but many 
reported cases involve young and elderly people.19,35 However, 
the susceptibility spectrum is broadening such that, apart from 
the usual prone groups of the young and elderly, 
immunocompromised people form part of a group at risk. Cases 
of STEC O157:H7 infections in people living with HIV/AIDS have 
been reported in Africa.32,36 This poses a big challenge because 

Pathogenicity of STEC O157:H7 infection
STEC O157:H7 possesses different virulence factors that are 
important in pathogenicity. The major virulence factor is the 
shiga toxin. Two forms of the toxin, stx1 and stx2 encoded by stx1 
and stx2 genes are known59 and reported to be responsible for 
haemorrhagic uremic syndrome (HUS).60 The stx1 is divided into 
three subtypes (stx1a, stx1c and stx1d) while seven subtypes 
form the stx2 group (stx2a, stx2b, stx2c, stx2d, stx2e, stx2f and 
stx2g).61 Of the two groups, subtypes of stx2 are associated with 
more severe HUS syndrome.62 Shiga toxins, which are protein 
molecules, bind to eukaryotic surface cells and inhibit protein 
synthesis with the death of host cells as a consequence.63 Intimin 
is another virulence factor which is coded by attaching and 
effacing the eae gene.64 Intimin is reported to facilitate 
attachment of bacteria to intestinal epithelia during colonisation 
resulting into production of lesions and diarrhoea.59,65,66 This 
virulence factor is also possessed by enteropathogenic E. coli 
(EPEC).67 Enterohaemolysin is another virulence factor for STEC 
O157:H7. This protein toxin damages cell membranes of 
erythrocytes and is used as a surrogate tool in detection of shiga 
toxin-producing E. coli.68–70 Although enterohaemolysin activity 
can easily be visualised on blood agar cultures, confirmation is 
usually achieved by PCR amplification of the ehxA gene.59,68 Some 
other E. coli strains such as O26, O103, O111, O118, O128, O121, 
O45 and O145 can produce disease syndromes and have been 
reported to be enterohaemolysin-positive and produce shiga 
toxins.68,70–72 The synergic effects of these virulence factors make 
STEC O157:H7 a potential pathogen to humans. All virulence 
genes, namely stx1, stx2, eae and ehxA genes, have been detected 
in humans, livestock, food products and the environment in 
eight different combinations as reported in 22 studies from 
Africa.8 The most dominant combination was stx1+stx2. Cattle are 
the most common source of STEC O157:H7, as shown in Table 2. 
Therefore, it is important to consider the use of diagnostic 
approaches which target different genes so as to increase the 
sensitivity of STEC O157:H7-related studies.

Disease syndromes caused by STEC O157:H7
To date, STEC O157:H7 has been reported to cause intestinal and 
extra-intestinal disease symptoms in humans. Disease symptoms 
may take different forms such as diarrhoea,17 haemorrhagic 
colitis13,19 or haemolytic uremic syndrome.13 Haemolytic uremic 
syndrome, which is characterised by thrombocytopenia, 

Table 2: STEC O157:H7 virulence factor combinations from studies in 
Africa

*Central African Republic.

Gene 
combination

Source Reports Countries

stx1 Cattle feces, milk 2 Kenya 

stx2 Cattle feces, human 
stool

2 CAR* and Kenya

stx1 + eae Human stool 1 CAR*

stx1 + stx2 Cattle feces, water, 
fish, human stool, 
milk, beef, goat, 
sediment

6 CAR, Ethiopia, 
Egypt and Morocco

eae + ehxA Cattle feces, pig 1 South Africa

eae + stx2 + ehxA Cattle feces, cattle 
carcass

2 Tanzania and 
Algeria

stx1 + stx2 + eae Human stool, beef 2 Cameroon and 
Morocco 

stx1 + stx2 + eae 
+ ehxA

Cattle feces, goat, 
sheep, pig, human 
stool

2 Nigeria, South 
Africa and Tunisia
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